We need a clean circular economy – not a dirty one

Dr A. Michael Warhurst
Executive Director, CHEM Trust

EEA Workshop: Groups of chemicals of concern in the circular economy
1-2 December 2016

www.chemtrust.org.uk
@chemtrust @mwarhurst
About CHEM Trust

- A charity working mainly at EU level to protect humans & wildlife from harmful chemicals
- Working with scientists, technical processes and decision makers, in partnership with other civil society groups
- Focus on identification of, and action on, endocrine disrupting chemicals
- See our blog & twitter for more: www.chemtrust.org.uk
A clean circular economy

- A circular economy should lead to more reuse, recycling, remanufacture – and longer product lifetimes
- But hazardous chemicals can disrupt this:
 - Long lasting products: may contain chemicals that have been banned (& aren’t labelled), disrupting recycling & remanufacturing
 - Contamination of feedstock: it’s harder to control feedstock quality for a recycled material vs a virgin one
- Two examples:
 - Bisphenol A (BPA): High volume chemical, used in food can linings, thermal paper, polycarbonate plastics
 - Brominated flame retardants (BFRs): Large group of chemicals, used in furniture, electronics, building products.
- A dirty circular economy will not be sustainable
1) Bisphenol A (BPA) in thermal paper

- BPA (known EDC) used in thermal paper (e.g. till receipts)
 - Then enters the recycled paper stream
- Problem for circular economy:
 - Recycled paper & card (e.g. pizza boxes) contaminated with BPA [1]
- Solutions:
 - Stop recycling thermal paper with other paper?
 - Regulate recycled paper use in food contact materials? There is a gap in EU law on this [2]
 - Ban BPA in thermal paper? Agreed by EU [3], but:
 - (1) Enters into force 3y after publication in OJ &
 - (2) “bisphenol S (BPS), the most likely substitute according to France, may have a toxicological profile similar to BPA” – but no controls yet…
2) BFRs in furniture & building products

- These are widely used, long lived products
 - Increases the chance that will contain banned chemicals by the time they enter the waste stream.
 - They form a reservoir of hazardous chemicals (including UNEP POPs) [4]
- Recycling can spread contamination
 - E.g. BFR-contaminated polyurethane is being recycled into carpet backing in USA [5]
- Solutions
 - Rapid action to remove problem chemicals from products, at design stage (including before regulation)
 - Contaminated materials will probably need to be disposed of; but information flow needed
 - But: Not all BFRs are well understood, how should unregulated ones be addressed?
Why grouping is needed

• Chemical assessment & action currently too slow & cautious
 – Lack of data is still rewarded – ‘no data, no problem’
 – In reality always dealing with ‘currently estimated toxicity (CET)’, not ‘real’ toxicity, & CET is likely to get worse with time (e.g. see [6])
 – Exposure to mixtures – the real world - still ignored

• Need to stop movement from a problem chemical to a similar one:
 – Similar properties make substitution easier
 – Similar properties increase likelihood of similar hazards

• Regulation constantly lags behind the reality of the market
 – Banning one substance at a time is slow, and just drives the market through different chemicals in a group
 – This means continued problems in recycling, as banned substances continue to appear in the waste stream
 – REACH was supposed to solve these problems, ensuring adequate safety data on all chemicals, preventing unwise substitution, but it isn’t
Some groups of concern

• Bisphenols
 – Regulations currently focusing on BPA, but BPS, BPF of similar concern – but use is continuing (and probably increasing).
 – Regulators are pointing out the problem - e.g. the REACH Risk Assessment Committee, but restrictions are some way away.

• Brominated flame retardants
 – Debates on regulation of PDBEs for >10 years, still not finished
 – Whole range of ‘new’ BFRs now in homes (e.g. UK house dust [7]) and people (e.g. serum in Sweden [8]). Many in use for years, and have been identified by scientists, not by industry highlighting them as an issue.

• Per- and poly-fluorochemicals
 – There is an EU plan to restrict PFOA-related substances, but this has many exemptions [9] & is only a fraction of the chemicals on the market.
 – It has been estimated that there are 3,000 PFCs on the market, and companies are moving through this list [10]
A clean circle?

- Aim towards non-toxic products, with faster, more precautionary, safety assessment and regulation of chemicals
 - Grouping to accelerate regulatory (& business) action is a key tool in this process
- Other measures:
 - Ensure recycled materials & remanufactured goods are properly regulated (with enforcement), e.g. paper/card food contact materials, carpet backing
 - Improve (global) information flow on hazardous substances in finished products (also groups?)
 - Some materials should not be recycled
- Without such measures, the circular economy is at risk of failure due to contamination scandals

Briefing: http://www.chemtrust.org.uk/circulareconomy
References

http://kemi.taenk.dk/bliv-groennere/test-unwanted-chemicals-found-pizza-boxes

[3] EU Chemical Agency committee agrees that Bisphenol A in receipts poses risk to workers, Jun 2015:
Draft amendment to annex available here:

[5] Optimizing Recycling: Post-Consumer Flexible Polyurethane Foam Scrap Used In Building Products, Health Building Network, July 2016:

[8] Analysis of new brominated flame retardants in human serum and background air, Swedish EPA, October 2016,
